就连基础研究的科学现象都还没有得到解释。
距离研发出商用聚变堆材料还有很长的路要走,别问,问就是商用五十年往后。
另外还有其他困难。
聚变堆中的服役环境是极端严苛的,这意味着做相关实验的难度也十分的大。
例如。
研究聚变堆材料,显然需要进行中子辐照实验,但这个星球上的中子源是十分稀缺的,做一次中子辐照实验不仅耗资巨大,还可能耗费数年的时间来积累足够的中子损伤。
当前文献中能够找到的中子辐照数据屈指可数,这对新材料的研发显然是不利的。
现在研究聚变中子辐照,往往采用的是离子辐照来类比,但依然很贵!
而且离子还带电,在材料中的穿透深度很浅,只集中在材料表面的几个微米内;而中子往往能够穿透整个材料,引起均匀的辐照损伤。
因此,离子辐照的结果能有多少能用于中子辐照还真不好说。
另一个研究思路则是利用超级计算机,直接在虚拟世界中模拟中子辐照对材料的损伤,但也是很多研究所在做的事情。
但这个思路也面临着极大的挑战。
要在计算机中构建一个模型,其时间尺度横跨飞秒到年,空间尺度从埃米到厘米,中间几十个数量级的差别犹如天堑。
没有任何超算能够精准的模拟这一过程,现在只有用各种‘真空中的球形鸡’来简化模型。
“怎么?能不能腾出时间来?”田教授继续鼓动慕景池,“你那个准点下班回家的习惯可以改一改,晚回去两三四个小时也没事。”
慕景池摇摇头,还是拒绝了。
第一壁材料对现在的慕景池而言,这几乎无解。
这种高能环境下任何材料结构都被打烂了,如果现在的均质材料都不行,那基本上没辙。材料科学本来就是在材料微观结构上想办法,这微观结构都被打碎了,再牛逼的工艺也不好使啊!
就算慕景池得到未来的相关知识,也没有核聚变商用的相关信息。
要么是未来也没有突破核聚变的问题,要么萃取的知识有局限,并没有被收录到核聚变的相关知识。
以现在的慕景池来看,这个问题不是单纯的材料能够解决的。需要材料、数学、物理、计算机等等领域的通力合作才能完成的。
不论是托卡马克,还是仿星堆,亦或者是原理不同的NIF,三阿尔法能源的聚变堆,都不可能绕开这个第一壁。
“您还是另寻高明吧!”慕景池摇摇头,“我没什么时间和精力,也没那个能耐去搞着这第一壁材料研究。”